Teflon™ FEP
Fluoropolymer Resins

Product and Properties Handbook
Table of Contents

- Introduction .. 3
- Commercially Available Products 3
- Specifications .. 3
- General Properties of Teflon™ FEP 3
- Typical Properties of Teflon™ FEP 3
- Mechanical Properties 3
- Tensile Properties .. 4
- Flexural Modulus .. 4
- Compressive Stress ... 5
- Creep and Cold Flow ... 5
 - Apparent Modulus of Elasticity 5
 - Stress Relaxation ... 5
- Poisson’s Ratio .. 9
- Fatigue Resistance .. 9
- Impact Resistance .. 9
- Hardness ... 10
- Friction .. 10
- Thermal Properties ... 10
- Electrical Properties ... 11
- Chemical Resistance ... 11
- Absorption ... 11
- Permeability ... 11
- Weathering .. 11
- Cryogenic Service ... 11
- Mildew Resistance .. 13
- FDA Compliance .. 13
- Optical Properties .. 13
- Fabrication Techniques 13
- Forming and Fabrication 14
- Choose Correct Working Speeds 14
- Properly Shape and Use Tools 14
- Rules for Dimensioning and Finishing 15
 - Closer Tolerances ... 15
 - Measuring Tolerances 15
 - Surface Finishes .. 15
- Safety Precautions .. 15
Introduction

Teflon™ FEP (fluorinated ethylene propylene) is chemically a copolymer of hexafluoropropylene and tetrafluoroethylene. It differs from PTFE (polytetrafluoroethylene) resins, in that it is melt-processible using conventional injection molding and screw extrusion techniques. Teflon™ PFA is a resin very similar to Teflon™ FEP in use, but Teflon™ PFA can be used at even higher temperatures.

Teflon™ FEP fluoropolymer resin can be made into articles having a combination of mechanical, chemical, electrical, temperature, and friction-resisting properties unmatched by articles made of any other material.

The design and engineering data presented in this publication are intended to assist end users in determining where and how Teflon™ FEP fluoropolymer resin may best be used. As with other products, it is recommended that design engineers work closely with an experienced fabricator because the method of fabrication may markedly affect not only production costs, but also the properties of the finished article.

All properties presented in this handbook should be considered typical values and are not to be used for specification purposes.

Commercially Available Products

Teflon™ FEP fluoropolymer resin is available in pellet form for general-purpose molding and extrusion. The highest molecular weight (lowest melt flow number) resins are used when the highest level of stress crack resistance is required and where processing rates are of secondary importance. Lower molecular weight (higher melt flow number) FEP resins are designed for high speed melt extrusion onto fine wire.

Standard colors are available as concentrates from commercial producers for incorporation by the processor. Other product grades are also available for special processing needs. They include powder and dispersion forms for coating applications and special resins for wire insulation.

Teflon™ FEP film is also available in a wide range of thicknesses for electrical, chemical, and release applications. These include untreated as well as one or both sides treated for improved cementability.

Specifications

The ASTM material specification covering Teflon™ FEP fluoropolymer resin is D2116. Teflon™ FEP fluoropolymer resin is also called out in various industrial and military specifications for tubing, molded parts, and film, as well as numerous wire and cable applications.

General Properties of Teflon™ FEP

Teflon™ FEP can be described as a fluoropolymer resin having most of the excellent physical, chemical, and electrical properties of Teflon™ PTFE fluoropolymer resin, but with the ability to be processed using conventional thermoplastics processing equipment. The upper continuous use temperature is 205 °C (401 °F). Teflon™ FEP fluoropolymer resin is satisfactorily used in cryogenic service at temperatures well below that of liquid nitrogen. It is normally inert to liquid oxygen (LOX) when the surfaces are free of any contamination, pigmentation, or fillers. Resistance to chemicals is excellent as is weathering resistance.

This combination of properties and processibility make Teflon™ FEP fluoropolymer resin the preferred product in applications, such as valve and pump linings, pipe liners, release applications, or similar uses, where resistance to chemicals at elevated temperatures is essential or serviceability at extremely low temperatures is desired.

Typical Properties of Teflon™ FEP

A list of typical properties of Teflon™ FEP fluoropolymer resin is shown in Table 1. These data are of a general nature and should not be used for specifications. Because the principal difference among the grades is molecular weight, only those properties affected by molecular weight show significant differences (e.g., toughness and stress crack resistance). Minor differences in tensile and compressive properties are sometimes seen due to variations in processing conditions. Electrical properties and resistance to chemicals are generally the same for all grades.

Mechanical Properties

Fabricated shapes of Teflon™ FEP fluoropolymer resins are tough, flexible in thin sections, and fairly rigid in thick sections. With increasing temperature, rigidity (as measured by flexural modulus) decreases significantly up to the maximum continuous-use temperature of 205 °C (401 °F). Surfaces of fabricated parts have a very low coefficient of friction, although slightly higher than that of Teflon™ PTFE. Very little sticks to Teflon™ FEP, but the surfaces can be specially treated to accept conventional industrial adhesives.
Table 1. Typical Properties of Teflon™ FEP Fluoropolymer Resins

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Unit</th>
<th>Typical Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melt Flow Rate (MFR at 372 °C [702 °F]/5.0 kg)</td>
<td>ISO 12086</td>
<td>D2116</td>
<td>3–30</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>ISO 1183</td>
<td>D792</td>
<td>—</td>
</tr>
<tr>
<td>Tensile Strength, 23 °C (73 °F)</td>
<td>ISO 12086</td>
<td>D638</td>
<td>MPa (psi) 20–34</td>
</tr>
<tr>
<td>Ultimate Elongation, 23 °C (73 °F)</td>
<td>ISO 12086</td>
<td>D638</td>
<td>%</td>
</tr>
<tr>
<td>Flexural Modulus, 23 °C (73 °F)</td>
<td>ISO 178</td>
<td>D790</td>
<td>MPa (psi) 550–655 (80,000–95,000)</td>
</tr>
<tr>
<td>MIT Folding Endurance (0.20 mm, 8 mil film)</td>
<td>—</td>
<td>D2176c</td>
<td>Cycles 5,000–1x10^6</td>
</tr>
<tr>
<td>Hardness, Shore Durometer</td>
<td>ISO 868</td>
<td>D2240</td>
<td>—</td>
</tr>
<tr>
<td>Dielectric Constant, 1 MHz</td>
<td>IEC 250</td>
<td>D150</td>
<td>—</td>
</tr>
<tr>
<td>Dissipation Factor, 1 MHz</td>
<td>IEC 250</td>
<td>D150</td>
<td>—</td>
</tr>
<tr>
<td>Dissipation Factor, 1 GHz</td>
<td>IEC 250</td>
<td>D2520</td>
<td>—</td>
</tr>
<tr>
<td>Dielectric Strength, 0.25 mm film</td>
<td>IEC 60243</td>
<td>D149</td>
<td>kV/mm 78</td>
</tr>
<tr>
<td>Melting Point</td>
<td>IEC 250</td>
<td>D4591</td>
<td>°C (°F) 260 (500)</td>
</tr>
<tr>
<td>Service Temperature (20,000 hr)</td>
<td>ISO 2578</td>
<td>—</td>
<td>°C (°F) 205 (401)</td>
</tr>
<tr>
<td>Limiting Oxygen Index</td>
<td>ISO 4589</td>
<td>D2863</td>
<td>%</td>
</tr>
<tr>
<td>Flammability Classification^3,4</td>
<td>UL 94</td>
<td>—</td>
<td>94 V-0</td>
</tr>
<tr>
<td>Weather Resistance</td>
<td>Weather-O-Meter (2,000 hr)</td>
<td>—</td>
<td>No Effect</td>
</tr>
<tr>
<td>Solvent Resistance</td>
<td>D543</td>
<td>—</td>
<td>Excellent</td>
</tr>
<tr>
<td>Chemical Resistance</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Water Absorption, 24 hr</td>
<td>D570</td>
<td>%</td>
<td>0.01</td>
</tr>
</tbody>
</table>

^1ASTM Method, unless otherwise specified
^2Historical standard
^3These results are based on laboratory tests, under controlled conditions, and do not reflect performance under actual fire conditions.
^4Current rating is a typical theoretical value.

Tensile Properties

Teflon™ FEP fluoropolymer resin is an engineering material whose performance in any particular application may be predicted by calculation in the same manner as for other engineering materials. From the data presented in this handbook, values can be selected which, with appropriate safety factors, will allow standard engineering formulas to be used in designing parts.

Stress/strain curves for temperatures in the usual design range for Teflon™ FEP 100 X (Figure 1) show that yield occurs at relatively low deformations. Elastic response begins to deviate from linearity at strains of only a few percent, as with most plastics. Therefore, when designing with Teflon™ FEP, it is often best to work with acceptable strain and determine the corresponding stress. Typical stress/strain curves that show ultimate tensile strengths at -52 °C (-62 °F), 23 °C (73 °F), 100 °C (212 °F), and 200 °C (392 °F) for Teflon™ FEP 100 X are given in Figures 2, 3, 4, and 5. Test specimen preparation, geometry, and test conditions affect test results, so these variables must be kept constant when making comparisons.

The effects of temperature on tensile strength and ultimate elongation are summarized in Figures 6 and 7.

Of more practical importance is yield strength. With Teflon™ FEP fluoropolymer resin, elastic response begins to deviate from linearity at strains of only a few percent. This is referred to as yield strength. The effect of temperature on yield strength for Teflon™ FEP 100 X is shown in Table 2.

Flexural Modulus

Flexural modulus is a measure of stiffness and among the properties included in Table 1. Teflon™ FEP fluoropolymer resin retains flexibility to very low temperatures and is useful at cryogenic temperatures. The effect of temperature on flexural modulus is shown in Figure 8.
Compressive Stress

Stress/strain curves for compression are similar to those for tension at low values of strain. Typical compression curves for Teflon™ FEP 100 X at three temperatures at low levels of strain are shown in Figure 9.

Creep and Cold Flow

A plastic material subjected to continuous load experiences a continued deformation with time that is called creep or "cold flow." A similar phenomenon occurs with metals at elevated temperatures. With most plastics, however, deformation can be significant, even at room temperature or below; thus, the name "cold flow."

Creep is the total deformation under stress after a specified time in a given environment beyond that instantaneous strain that occurs immediately upon loading. Independent variables that affect creep are load or stress level, time under load, and temperature.

Initial strain or deformation occurs instantaneously as a load is applied to Teflon™ FEP fluoropolymer resin or any other plastic.

Following this initial strain is a period during which the part continues to deform, but at a decreasing rate. Data can be obtained over a wide range of temperatures using tensile, compressive, or flexural creep. Flexural measurements are more easily made and the most common. However, tensile and compressive creep data are frequently more useful in designing parts. Typical data for tensile loadings for Teflon™ FEP 100 X at four temperatures are shown graphically in Figures 10, 11, 12, and 13.

Typical curves for total deformation versus time under compressive load are shown at two temperatures for Teflon™ FEP 100 X in Figures 14 and 15.

Apparent Modulus of Elasticity

The concept of "apparent modulus" is a convenient method for expressing creep because it takes into account initial strain for an applied stress plus the amount of deformation or strain that occurs with time. Thus, apparent modulus E_A is

$$E_A = \frac{\text{Stress (psi)}}{\text{Initial strain + creep}}$$

Because parts tend to deform in time at a decreasing rate, the acceptable strain based on service life of the part must be determined—the shorter the duration of load, the higher the apparent modulus and allowable stress. Apparent modulus is most easily explained with an example.

As long as the stress level is below the elastic limit of the material, modulus of elasticity E is obtained from the equation above. For a compressive stress of 1,000 psi, Figure 9 gives a strain of 0.015 inch per inch for Teflon™ FEP 100 X at 23 °C (73 °F). Then,

$$E_A = 1,000/0.015 = 66,700 \text{ psi (roughly)}$$

If the same stress level prevails for 200 hr, total strain will be the sum of initial strain plus strain due to time. This total strain is obtained from Figure 14, where total deformation under compressive load for 200 hr is 0.02 inch per inch for Teflon™ FEP fluoropolymer resin. Therefore,

$$E_A = 1,000/0.02 = 50,000 \text{ psi}$$

Similarly, E_A can be determined for one year. Extrapolation of the curve in Figure 14 gives a deformation of 0.025 inch per inch, and

$$E_A = 1,000/0.025 = 40,000 \text{ psi}$$

When plotted against time, these calculated values for "apparent modulus" provide an excellent means for predicting creep at various stress levels. For all practical purposes, curves of deformation versus time eventually tend to level off. Beyond a certain point, creep is small and may be neglected for many applications.

Stress Relaxation

When materials that creep or cold-flow are used as gaskets in flanged joints, the phenomenon of stress relaxation is generally encountered. With Teflon™ FEP fluoropolymer resin, an application where this is important is in lined valves or tees, as an extension of the lining is generally used as the flange gasket. In flanged, bolted connections, parts of Teflon™ FEP will cold-flow between the flange faces with a resultant decrease in bolt pressure. Such relaxation in gasket stock may result in a leaky joint. Tightening the flange bolts during the first day after installation will usually maintain bolting pressure and prevent leakage; thereafter, stress relaxation will be negligible.

Typical curves for tensile stress relaxation, Figures 16 and 17, illustrate the rates at which tensile stress decays when the specimen is maintained at constant strain.
Figure 1. Tensile Stress, Based on Original Cross-Section, Teflon™ FEP 100 X

Figure 2. Tensile Stress versus Strain at –52 °C (–62 °F), Teflon™ FEP 100 X*

Figure 3. Tensile Stress versus Strain at 23 °C (73 °F), Teflon™ FEP 100 X*

Figure 4. Tensile Stress versus Strain at 100 °C (212 °F), Teflon™ FEP 100 X*

Figure 5. Tensile Stress versus Strain at 200 °C (392 °F), Teflon™ FEP 100 X*
Figure 6. Tensile Strength versus Temperature, Teflon® FEP 100 X°

Figure 7. Ultimate Elongation versus Temperature, Teflon® FEP 100 X°

Figure 8. Flexural Modulus versus Temperature, Teflon® FEP 100 X

Figure 9. Compressive Stress versus Strain, Teflon® FEP 100 X°

Table 2. Effect of Temperature on Yield Strength—Teflon® FEP 100 X°

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Yield Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>°F</td>
</tr>
<tr>
<td>-251</td>
<td>-420</td>
</tr>
<tr>
<td>-196</td>
<td>-320</td>
</tr>
<tr>
<td>-129</td>
<td>-200</td>
</tr>
<tr>
<td>-73</td>
<td>-100</td>
</tr>
<tr>
<td>-56</td>
<td>-68</td>
</tr>
<tr>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>23</td>
<td>73</td>
</tr>
<tr>
<td>70</td>
<td>158</td>
</tr>
<tr>
<td>121</td>
<td>250</td>
</tr>
</tbody>
</table>
Figure 10. Total Deformation versus Time Under Load at –54°C (-65°F), Teflon® FEP 100 X

Figure 11. Total Deformation versus Time Under Load at 23°C (73°F), Teflon® FEP 100 X

Figure 12. Total Deformation versus Time Under Load at 100°C (212°F), Teflon® FEP 100 X

Figure 13. Total Deformation versus Time Under Load at 175°C (347°F), Teflon® FEP 100 X

Figure 14. Total Deformation versus Time Under Compressive Load at 23°C (73°F), Teflon® FEP 100 X

Figure 15. Total Deformation versus Time Under Compressive Load at 100°C (212°F), Teflon® FEP 100 X
Poisson's Ratio
Available values for Poisson’s ratio at two temperatures for Teflon™ FEP 100 X are listed in Table 3.

Table 3. Poisson’s Ratio, Teflon™ FEP 100 X

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Poisson’s Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>23°C (73°F)</td>
<td>0.48</td>
</tr>
<tr>
<td>100°C (212°F)</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Fatigue Resistance
Curves of stress versus strain are a sound basis for calculating the performance of statically loaded parts. However, they are not a good basis for design of parts subjected to repeated stress. As with ferrous alloys, there is a stress value—the fatigue endurance limit—below which Teflon™ FEP fluoropolymer resins will not fail, no matter how many times load is applied.

Typical fatigue data for Teflon™ FEP 100 X are given in Table 4. These measurements were made using a Sonntag-Universal fatigue testing machine.

Higher molecular weight Teflon™ FEP fluoropolymer resins would be expected to require a higher number of cycles to cause failure at any given stress level.

Table 4. Fatigue Resistance of Teflon™ FEP 100 X at 23°C (73°F)

<table>
<thead>
<tr>
<th>Stress (MPa)</th>
<th>Cycles to Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.9</td>
<td>>7 million</td>
</tr>
<tr>
<td>9.65</td>
<td>>7.2 million</td>
</tr>
<tr>
<td>10.0</td>
<td>1,300</td>
</tr>
<tr>
<td>10.3</td>
<td>960</td>
</tr>
</tbody>
</table>

Impact Resistance
Ability to absorb impact energy, or impact toughness, is difficult to predict in a part because shape has a major effect on performance. Understanding how a part resists impact, however, helps in selecting a good design.

The energy of an impact has to be absorbed by a force developed within the part multiplied by the distance over which the part can deform. Designing flexibility into the part to lengthen the distance over which the energy is absorbed greatly reduces the internal force required to resist impact. The same factors that affect metals also affect plastics. As more and more flexibility is designed into a part subject to impact load, the better the part will perform.

Teflon™ FEP fluoropolymer resin has excellent impact strength over a wide range of temperatures. In the notched Izod impact test, no breaks are incurred with Teflon™ FEP 100 X at temperatures as low as −60°C (−76°F).

There is no exact method for relating impact test data to actual design calculations or performance. Generally, in addition to incorporating flexibility, the most important method for obtaining toughness or impact resistance is to eliminate all sharp corners and other features subject to high stress concentration. For exact design, prototype models must be prepared and tested under actual loads.
Hardness

The hardness of Teflon™ FEP 100 X by three different tests is shown in Table 5.

Tests using higher molecular weight Teflon™ FEP fluoropolymer resins give similar results, indicating that molecular weight has little, if any, effect on hardness.

Table 5. Hardness at 23 °C (73 °F), Teflon™ FEP 100 X

<table>
<thead>
<tr>
<th>Rockwell R Scale</th>
<th>Durometer D Scale</th>
<th>Durometer A Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>56</td>
<td>96</td>
</tr>
</tbody>
</table>

Friction

Teflon™ FEP fluoropolymer resin has a smooth surface and slippery feel. Because of the low coefficient of friction, there have been many practical non-lubricated and minimally lubricated mechanical systems developed.

Teflon™ FEP fluoropolymer resins exhibit very low friction in non-lubricated applications, especially at low surface velocities and pressures higher than 34 kPa (5 psi). The coefficient of friction increases rapidly with sliding speeds up to about 30 m/min (100 ft/min), under all pressure conditions. This pattern of behavior prevents “stick-slip” tendencies. Moreover, no “squeaking” or noise occurs, even at the slowest speeds. Above about 45 m/min (150 ft/min), sliding velocity has relatively little effect on combinations of pressure and velocity below the PV limit. Figure 19 indicates that static friction of Teflon™ FEP decreases with increasing pressure. The incorporation of fillers does not appreciably alter the coefficient of friction.

PV limits presented in Table 6 define the maximum combinations of pressure at which these materials will operate continuously without lubrication. PV limit does not necessarily define useful combinations of pressure and velocity because wear is not considered in its determination. The useful PV limit of a material cannot exceed the PV limit and must take into account the composition’s wear characteristics and allowable wear for the application. The melting point of the resin is an additional limiting factor.

Wear factor, K, is a proportionality factor relating to the wear of a non-lubricating surface (operating against a specific mating surface at combinations of pressure and velocity below the material’s PV limit). The wear factors listed in Table 6 can be used to predict wear for these compositions, against specific mating surfaces, using the following expression:

\[t = KPVT \]

where:

- \(t \) = wear, in \(\text{in}^3 \cdot \text{min} \)/\(\text{lb} \cdot \text{ft} \cdot \text{hr} \)
- \(K \) = wear factor, \(\text{in}^3 \cdot \text{min} \)/\(\text{lb} \cdot \text{ft} \cdot \text{hr} \)
- \(P \) = pressure, psi
- \(V \) = velocity, fpm
- \(T \) = time, hr

These measurements were made at ambient temperature and based on unidirectional loading on a fixed bushing or using a thrust washer. The wear factor “K” values are based on operating unlubricated below the PV limit against soft carbon steels (R 20 to 25) finished to 12 to 20 µin (AA). This factor is applicable for operation against most stainless steels and cast irons.

The coefficient of friction versus sliding speed for Teflon™ FEP 100 X is shown in Figure 18, while the coefficient of friction versus load at low rates of speed is shown in Figure 19.

Thermal Properties

Teflon™ FEP is a copolymer of hexafluoropropylene and tetrafluoroethylene and, as such, has a melting range rather than a sharp melting point. The melting peak derived from differential thermal analysis (DTA) is 257–263 °C (495–505 °F). Other thermal properties are listed in Table 1.

Table 6. PV and Wear Performance

<table>
<thead>
<tr>
<th>Property</th>
<th>Teflon™ FEP 100 X</th>
<th>15% (by Volume) Glass-Filled</th>
<th>10% (by Volume) Bronze-Filled</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV Limit (lb/in x fpm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>at 10 fpm</td>
<td>600</td>
<td>4,500</td>
<td>9,000</td>
</tr>
<tr>
<td>at 100 fpm</td>
<td>800</td>
<td>10,000</td>
<td>12,000</td>
</tr>
<tr>
<td>at 1,000 fpm</td>
<td>1,000</td>
<td>8,000</td>
<td>10,000</td>
</tr>
<tr>
<td>PV for 0.005 in Radial Wear in 1,000 hr (Non-lubricated)</td>
<td><10</td>
<td>1,650</td>
<td>5,000</td>
</tr>
<tr>
<td>Wear Factor “K”</td>
<td>>5,000</td>
<td>30</td>
<td>10</td>
</tr>
</tbody>
</table>
The heat of combustion of Teflon™ FEP fluoropolymer resin is extremely low. This property in combination with its very high oxygen index makes this product very useful in areas where fire hazards must be kept to a minimum.

Electrical Properties

Teflon™ FEP fluoropolymer resin has a dielectric constant of 2.04–2.05 over a wide range of frequencies from 1 kHz to 13 GHz. The dissipation factor increases slowly from 0.00006 at 1 kHz to 0.0006 at 30 MHz and peaks at 0.001 at 1 GHz. These relationships are shown graphically in *Figures 20* and *21*. The effects of temperature on these properties are shown in *Figures 22* and *23*. A glance at the figures will show that temperature has a significant effect on the dissipation factor, but the shapes of the curves are similar. The data were obtained from measurements made on Teflon™ FEP 100 X, but the values for other grades of Teflon™ FEP should be similar.

Chemical Resistance

Teflon™ FEP fluoropolymer resins are essentially chemically inert. Up to the highest use temperature of 200 °C (392 °F), very few chemicals are known to react chemically with these resins. Those that do include molten alkali metals, fluorine, and a few fluorochemicals, such as chlorine trifluoride, ClF₃, or oxygen difluoride, OF₂, which readily liberate free fluorine at elevated temperatures. The unique degree of inertness of Teflon™ fluoropolymer resin reflects its chemical structure. Molecules of Teflon™ FEP fluoropolymer resins are formed simply from strong carbon-carbon and super-strong carbon-fluorine interatomic bonds; moreover, the fluoride atoms form a protective sheath around the carbon core of each molecule. This structure also produces other special properties, such as insolubility and low surface tension (which imparts non-wettability to many solvents), low coefficient of friction, and excellent nonstick characteristics. For example, sheeting or components of Teflon™ PTFE resins may be bonded to metal with molten Teflon™ FEP. Teflon™ FEP film is frequently used for this purpose.

To a minor degree, halogenated organic chemicals may be absorbed by fluoropolymer resins. This will cause a very small weight change and, in some cases, slight swelling. Teflon™ FEP is less permeable than Teflon™ PTFE fluoropolymer resins and, hence, is affected to a lesser degree.

Absorption

Almost all plastics absorb small quantities of certain materials with which they come into contact. Submicroscopic voids between polymer molecules provide space for the material to be absorbed without chemical reaction. This phenomenon is usually marked by a slight weight increase and sometimes by discoloration.

Teflon™ FEP fluoropolymer resin has unusually low absorption compared with other thermoplastics. It absorbs practically no common acids or bases at temperatures as high as 200 °C (392 °F) and exposures of one year. Even the absorption of solvents is very small. Weight increases are generally less than 1% when exposed at elevated temperatures for long periods. Aqueous solutions are absorbed very little by Teflon™ FEP. Moisture absorption is typically less than 0.01% at ambient temperature and pressure.

Permeability

Many gases and vapors permeate Teflon™ FEP fluoropolymer resin at a much lower rate than for other thermoplastics. In general, permeation increases with temperature, pressure, and surface contact area and decreases with increased thickness. *Table 7* lists rates at which various gases are transmitted through Teflon™ FEP 100 X film, while typical vapor transmission rates of Teflon™ FEP (at 1 mil [25 µm] film thickness) are shown in *Table 8*. Note that the pressure for each material is its vapor pressure at the indicated temperature.

Figure 24 shows water vapor transmission rate of Teflon™ FEP film at 40 °C (104 °F) as a function of thickness.

Table 7. Typical Gas Permeability Rates of Teflon™ FEP 100 X Film—1 mil (25 µm) Thickness (ASTM D1434-75, 25 °C [77 °F])

<table>
<thead>
<tr>
<th>Gas</th>
<th>Permeability Rate, cc/(m² 24 hr·atm)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon dioxide</td>
<td>25.9 x 10³</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>34.1 x 10³</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>5.0 x 10³</td>
</tr>
<tr>
<td>Oxygen</td>
<td>11.6 x 10³</td>
</tr>
</tbody>
</table>

*To convert to cc/(100 in²·24 hr·atm), multiply by 0.0645.

Weathering

Teflon™ FEP fluoropolymer resin is essentially unchanged after 25 years of outdoor weathering in Florida. The tensile strength is unaffected, although there seems to be some loss in ultimate elongation. However, the value remains quite high.

Cryogenic Service

Teflon™ FEP fluoropolymer resin has performed satisfactorily in cryogenic service at temperatures below that of liquid nitrogen. When carefully cleaned of any organic substances, Teflon™ FEP is inert to LOX and frequently used in LOX applications.
Figure 18. Coefficient of Friction versus Sliding Speed, Teflon® FEP 100 X

![Image: Coefficient of Friction versus Sliding Speed](image)

- Temperature range: 24–66 °C (75–151 °F)
- Sliding Speed, m/min (ft/min)
- Coefficient of Friction

Figure 19. Coefficient of Friction versus Load (at <2 ft/min and Room Temperature), Teflon® FEP 100 X

![Image: Coefficient of Friction versus Load](image)

- Load, kg (lb)
- Coefficient of Friction

Figure 20. Dielectric Constant—Room Temperature, Teflon® FEP 100 X

![Image: Dielectric Constant](image)

- Log Frequency, Hz
- Dielectric Constant

Figure 21. Dissipation Factor—Room Temperature, Teflon® FEP 100 X

![Image: Dissipation Factor](image)

- Log Frequency, Hz
- Dissipation Factor

Figure 22. Dielectric Constant—Elevated Temperature, Teflon® FEP 100 X

![Image: Dielectric Constant](image)

- Log Frequency, Hz
- Dielectric Constant

Figure 23. Dissipation Factor—Elevated Temperature, Teflon® FEP 100 X

![Image: Dissipation Factor](image)

- Log Frequency, Hz
- Dissipation Factor
Table 8. Typical Vapor Transmission Rates, Teflon™ FEP 100 X (1 mil film, ASTM E96 Modified Test)

<table>
<thead>
<tr>
<th>Vapor</th>
<th>Temperature °C</th>
<th>°F</th>
<th>Vapor Transmission Rate g/m²·d</th>
<th>g/100 in²·d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetic acid</td>
<td>35</td>
<td>95</td>
<td>6.3</td>
<td>0.41</td>
</tr>
<tr>
<td>Acetone</td>
<td>35</td>
<td>95</td>
<td>14.7</td>
<td>0.95</td>
</tr>
<tr>
<td>Benzene</td>
<td>35</td>
<td>95</td>
<td>9.9</td>
<td>0.64</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>35</td>
<td>95</td>
<td>4.8</td>
<td>0.31</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>35</td>
<td>95</td>
<td>11.7</td>
<td>0.76</td>
</tr>
<tr>
<td>Ethyl alcohol</td>
<td>35</td>
<td>95</td>
<td>10.7</td>
<td>0.69</td>
</tr>
<tr>
<td>Freon™ F-12</td>
<td>23</td>
<td>73</td>
<td>372</td>
<td>24</td>
</tr>
<tr>
<td>Hexane</td>
<td>35</td>
<td>95</td>
<td>8.7</td>
<td>0.56</td>
</tr>
<tr>
<td>Hydrochloric acid</td>
<td>25</td>
<td>77</td>
<td><0.2</td>
<td><0.01</td>
</tr>
<tr>
<td>Nitric acid (red fuming)</td>
<td>25</td>
<td>77</td>
<td>160</td>
<td>10.5</td>
</tr>
<tr>
<td>Sodium hydroxide, 50%</td>
<td>25</td>
<td>77</td>
<td><0.2</td>
<td><0.01</td>
</tr>
<tr>
<td>Sulfuric acid, 98%</td>
<td>25</td>
<td>77</td>
<td>2 x 10⁻⁴</td>
<td>1 x 10⁻³</td>
</tr>
<tr>
<td>Water</td>
<td>39.5</td>
<td>103</td>
<td>7.0</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Figure 24. Water Vapor Transmission Rate of Teflon™ FEP Film at 40 °C (104 °F) per ASTM E96 (Modified)

Note: Values are averages only and not for specification purposes. To convert the permeation values for 100 in² to those for 1 m², multiply by 15.5.

Mildew Resistance

Teflon™ FEP fluoropolymer resin has been shown to be completely resistant to mildew growth by testing in a humidity chamber, while inoculated with a spore suspension, and in a soil burial test for three months.

FDA Compliance

Teflon™ FEP fluoropolymer resin may be used as articles or components of articles intended to contact food in compliance with FDA regulation 21 CFR 177.1550.

Optical Properties

In thin sections or films, Teflon™ FEP transmits a high percentage of ultraviolet and visible light. The solar transmission of Teflon™ FEP in thin-film form is approximately 96%. Teflon™ FEP fluoropolymer resin is much more transparent in the infrared region of the spectrum than is glass. The infrared transmission spectrum for Teflon™ FEP in thin films is shown in Figure 25.

Fabrication Techniques

Teflon™ FEP, as a thermoplastic polymer, can be processed by most techniques applicable to the type of resin. Depending upon the grade, and hence the melt viscosity (melt flow number), Teflon™ FEP fluoropolymer resin can be processed by injection, compression, transfer, or rotational molding. It can be extruded into a variety of complex shapes, including rod, tubing, and film, and can be coated onto wire as a primary insulation or for jacketing.
purposes. Resin selection depends on processing capabilities and desired properties.

The specific techniques are discussed in Chemours guides for injection molding, extrusion, and transfer molding that are available from your Chemours sales representative.

Forming and Fabrication

When extreme tolerance must be specified, product shapes are very complex, or just one or two prototypes are required, the machining of Teflon® FEP basic shapes becomes a logical means of fabrication.

All standard operations—turning, facing, boring, drilling, threading, tapping, reaming, grinding, etc.—are applicable to Teflon® FEP fluoropolymer resins. Special machinery is not necessary.

When machining parts from Teflon® FEP fluoropolymer resin, either manually or automatically, the basic rule to remember is that this fluoropolymer resin possesses physical properties unlike those of most other commonly machined materials. It is soft, yet springy. It is waxy, yet tough. It has the cutting “feel” of brass, yet the tool-wear effect of stainless steel. Nevertheless, any trained machinist can readily shape Teflon® FEP fluoropolymer resin to tolerances of ±0.001 in and, with special care, to ±0.0005 in.

Choose Correct Working Speeds

One property of Teflon® FEP fluoropolymer resin is the exceptionally low thermal conductivity. It does not rapidly absorb and dissipate heat generated at a cutting edge. If too much generated heat is retained in the cutting zone, it will tend to dull the tool and overheat the resin. Coolants, then, are desirable during machining operations, particularly above a surface speed of 150 m/min (500 fpm).

Coupled with low conductivity, the high thermal expansion of Teflon® FEP fluoropolymer resins (nearly ten times that of metals) could pose supplemental problems. Any generation and localization of excess heat will cause expansion of the fluoropolymer material at that point. Depending on the thickness of the section and the operation being performed, localized expansion may result in overcuts or undercuts and drilling a tapered hole.

Machining procedures, then, especially at working speeds, must take conductivity and expansion effects into account.

Surface speeds from 60 to 150 m/min (200 to 500 fpm) are most satisfactory for fine finish turning operations; at these speeds, flood coolants are not needed. Higher speeds can be used with very low feeds or for rougher cuts, but coolants become a necessity for removing excess generated heat. A good coolant consists of water plus water-soluble oil in a ratio of 10:1 to 20:1.

Feeds for the 60 to 150 m/min (200 to 500 fpm) speed range should run between 0.05–0.25 mm (0.002–0.010 in)/revolution. If a finishing cut is the object of a high-speed operation (e.g., an automatic screw-machine running at 240 m/min [800 fpm]), then feed must be dropped to a correspondingly lower value. Recommended depth of cut varies from 0.005 to 6.3 mm (0.0002 to 0.25 in).

In drilling operations, the forward travel of the tool should be held to 0.13–0.23 mm (0.005–0.009 in)/revolution. It may prove advantageous to drill with an in-out motion to allow dissipation of heat into the coolant.

Properly Shape and Use Tools

Along with working speeds, choice of tools is quite important to control heat buildup. While standard tools can be used, best results come from tools specifically shaped for use with Teflon® FEP fluoropolymer resins. Below is shape information important to proper single-point tool design:

- Top rake: 0–15 positive
- Side rake and side angle: 0–15
- Front or end rake: 0.5–1.0

Boring tools normally require the higher angles listed.

The quality of a tool’s cutting edge not only influences the amount of heat generated, but it also controls tolerances in a different way. A tool that is not sharp may tend to pull the stock out of line during machining, thereby, resulting in excessive resin removal. On the other hand, an improperly edged tool tends to compress the resin—resulting in shallow cuts.
An extremely sharp edge is, therefore, highly desirable, especially for machining work on filled compositions. “Stellite” and carbide-tipped tools will help to minimize required re-sharpening frequency.

To compensate partially for tool wear, it is helpful to grind tools with a slight nose radius. All drills, either twist or half-round, should have deep, highly polished flutes.

Adequate material support is also important, especially when machining long thin rods. If support is not provided, stock flexibility may lead to poor results.

Another characteristic of Teflon™ FEP fluoropolymer resin will be noted immediately after beginning any turning operation. Rather than chips and ribbons of removed stock, as encountered during the machining of most materials, Teflon™ FEP resin turns off as a long, continuous curl. If this curl is not mechanically guided away from the work, it may wrap around it, hampering the flow of coolant, or worse, forcing the work away from the tool. On an automatic screw machine, a momentary withdrawal of the tool from the stock will suffice.

Rules for Dimensioning and Finishing

Normally, Teflon™ FEP fluoropolymer resins are machined to tolerances of about ±0.127 mm (0.005 in). While closer tolerances are occasionally required, they usually are not necessary. The natural resiliency of these resins allows machined parts to conform naturally to working dimensions. For example, a part with an interference can be press-fitted at much lower cost than required for final machining to exact dimensions, and the press-fitted part will perform equally well.

Closer Tolerances

When it is necessary to produce shapes with extremely close tolerances, it is usually essential to follow a stress-relieving procedure. By heating a Teflon™ FEP fluoropolymer resin stock to slightly above its expected service temperature (but not above its melting point), initial stresses are relieved.

Holding this temperature for 1 hr/2.5 cm (1 in) of thickness, followed by slow cooling, completes the annealing step. A rough cut will then bring the stock to within 0.38–0.76 mm (0.015–0.030 in) of final dimensions. Re-annealing prior to a final finishing cut will remove stresses induced by the tool.

Measuring Tolerances

Personnel should exercise caution when measuring tolerances on parts machined from any Teflon™ fluoropolymer resin. In general, results will be better if the measuring instruments do not exert excessive pressure on the piece. A micrometer used by inexperienced personnel could easily read slightly under the true dimension because of the compressibility of the Teflon™ FEP fluoropolymer resin being used. Optical comparators are often useful in eliminating this type of error.

It is best to check dimensions at the expected service temperature, but temperature compensation will suffice if this is not practical. Parts machined to final size and measured at room temperatures or below will not meet specifications at higher temperatures. The reverse is also true.

Surface Finishes

Surface finishes better than 0.4 µm (16 µin) are possible, but are rarely needed because of the resin’s compressibility and low coefficient of friction. Precision-honed and lapped cutting tools will produce a 0.4-µm (16-µin) surface when required; standard equipment yields a finish of about 0.8 µm (32 µin).

Lapping compounds may be used, but these as well as grinding compounds may become embedded in the resin and prove to be very difficult to remove. Contaminants from machinery not used exclusively for Teflon™ FEP fluoropolymer resin can also embed in the resin surface.

Safety Precautions

VAPORS CAN BE LIBERATED THAT MAY BE HAZARDOUS IF INHALED.

Before using Teflon™ FEP, read the Safety Data Sheet (SDS) and detailed information in the “Guide to the Safe Handling of Fluoropolymer Resins,” published by the Plastics Industry Association and Plastics Europe.

Open and use containers only in well-ventilated areas using local exhaust ventilation (LEV). Vapors and fumes liberated during hot processing, or from smoking tobacco or cigarettes contaminated with Teflon™ FEP, may cause flu-like symptoms (chills, fever, sore throat) that may not occur until several hours after exposure and that typically pass within about 36 to 48 hr. Vapors and fumes liberated during hot processing should be exhausted completely from the work area; contamination of tobacco with polymers should be avoided. Mixtures with some finely divided metals, such as magnesium or aluminum, can be flammable or explosive under some conditions.
HOW TO USE THE TEFLOW™ BRAND NAME WITH YOUR PRODUCT

Teflon™ is a registered trademark of Chemours for its brand of fluoropolymer resins, coatings, films, and dispersions. The Teflon™ brand name is licensed by Chemours in association with approved applications. Without a trademark license, customers may not identify their product with the Teflon™ brand name, as Chemours does not sell such offerings with the Teflon™ trademark. Unlicensed customers may refer to the Chemours product offering with only the Chemours name and product code number descriptor as Chemours sells its product offerings. There are no fair use rights or exhaustion of rights to use the Teflon™ trademark from buying from Chemours, a Chemours customer, or a distributor without a trademark license from Chemours.

If you are interested in applying for a trademark licensing agreement for the Teflon™ brand, please visit www.teflon.com/license.

For more information, visit teflon.com.

CAUTION: Do not use or resell Chemours materials in medical applications involving implantation in the human body or contact with internal bodily fluids or tissues unless agreed to by Seller in a written agreement covering such use. For further information, please contact your Chemours representative. For medical emergencies, spills, or other critical situations, call (866) 595-1473 within the United States. For those outside of the United States, call (302) 773-2000.

The information set forth herein is furnished free of charge and based on technical data that Chemours believes to be reliable. It is intended for use by persons having technical skill, at their own discretion and risk. The handling precaution information contained herein is given with the understanding that those using it will satisfy themselves that their particular conditions of use present no health or safety hazards. Because conditions of product use are outside our control, Chemours makes no warranties, express or implied, and assumes no liability in connection with any use of this information. As with any material, evaluation of any compound under end-use conditions prior to specification is essential. Nothing herein is to be taken as a license to operate under or a recommendation to infringe any patents.

NO PART OF THIS MATERIAL MAY BE REPRODUCED, STORED IN A RETRIEVAL SYSTEM OR TRANSMITTED IN ANY FORM OR BY ANY MEANS ELECTRONIC, MECHANICAL, PHOTOCOPYING, RECORDING OR OTHERWISE WITHOUT THE PRIOR WRITTEN PERMISSION OF CHEMOURS.

© 2018 The Chemours Company FC, LLC. Teflon™, Freon™, and any associated logos are trademarks or copyrights of The Chemours Company FC, LLC. Chemours™ and the Chemours Logo are trademarks of The Chemours Company.

Replaces: H-37052-3
C-11634 (6/18)